Page 39 - Demo
P. 39
CONCRETE TECHNOLOGYwww.cpi-worldwide.com CPI %u2013 Concrete Plant International %u2013 6 | 2025HEIGHT CONTROL SYSTEMDetailed and intelligent quality controlWeidenstra%u00dfe 1 %u00b7 57627 Hachenburg %u00b7 GermanyPhone: +49 2662 94 14 34 %u00b7 Fax: +49 2662 94 14 41Information request: info@r-u-w.dePRECISE.For optimal product resultsHeight control of concrete blocksin a range of 20 %u2013490 mm with anaccuracy of +/- 0.5 mm.INTELLIGENT.Highest quality through early error detectionAutomatic inspection of theproducts for anomalies (blowouts, holes, cracks, etc.) immediately in production.EFFICIENT.Continuous optimization of productionPrevention of cost-intensivecomplaints through data recordingand evaluation.SHV500MORE INFORMATION: www.r-u-w.deRULER OFTHE HEIGHTSINFORM AND UPGRADE NOW!%u2022 Different LC3 systems, regardless of the clinker content and type of clay, minimally affect the elastic modulus of concrete, compared to concrete produced with conventional cement types.%u2022 LC3 mixes produce lower drying shrinkage strain than a mix with 100% conventional CEM II/A-L or a mix with 50% of CEM II replaced by GGBS, provided that the Na2Oeq in the system is not high. The durability properties of the concrete systems discussed in this paper will be covered in a follow-up publication in the next issue of CPI. Acknowledgements The authors wish to acknowledge the support received from Chryso (SA), Sika (SA), and AfriSam. The authors specially thank Dr. Mohsen Ben Haha, HeidelbergCement (TZ), Mr. Pieter Nel, and Mr. Robert Damian for supplying/assisting in obtaining samples of kaolinite clay from HeidelbergCement plant area in Dar es Salaam, Pugu deposit in Tanzania and Bronkhorstspruit deposit in South Africa. Professor Karen Scrivener of EPFL, Switzerland, is also gratefully acknowledged for her helpful advice on the research programme. nReferences[1] K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2%u201326. https://doi.org/10.1016/j.cemconres.2018.03.015.[2] A. Alujas, R. Fern%u00e1ndez, R. Quintana, K.L. Scrivener, F. Martirena, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Appl. Clay Sci. 108 (2015) 94%u2013101. https://doi.org/10.1016/j.clay.2015.01.028.[3] M. Antoni, J. Rossen, F. Martirena, K. Scrivener, Cement substitution by a combination of metakaolin and limestone, Cem. Concr. Res. 42 (2012) 1579%u20131589. https://doi.org/10.1016/j.cemconres.2012.09.006.[4] Y. Dhandapani, T. Sakthivel, M. Santhanam, R. Gettu, R.G. Pillai, Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3), Cem. Concr. Res. 107 (2018) 136%u2013151. https://doi.org/10.1016/j.cemconres.2018.02.005.[5] R.G. Pillai, R. Gettu, M. Santhanam, S. Rengaraju, Y. Dhandapani, S. Rathnarajan, A.S. Basavaraj, Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3), Cem. Concr. Res. 118 (2019) 111%u2013119. https://doi.org/10.1016/j.cemconres.2018.11.019.[6] S.S. Berriel, A. Favier, E.R. Dom%u00ednguez, I.S. Machado, U. Heierli, K. Scrivener, F.M. Hern%u00e1ndez, G. Habert, Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba, J. Clean. Prod. 124 (2016) 361%u2013369. https://doi.org/10.1016/j.jclepro.2016.02.125.[7] L.M. Vizca%u00edno-Andr%u00e9s, S. S%u00e1nchez-Berriel, S. Damas-Carrera, A. P%u00e9rez-Hern%u00e1ndez, K.L. Scrivener, J.F. Martirena-Hern%u00e1ndez, Industrial trial to produce a low clinker, low carbon cement, Mater. Construcci%u00f3n. 65 (2015). https://doi.org/10.3989/mc.2015.00614.[8] S. Bishnoi, S. Maity, A. Mallik, S. Joseph, S. Krishnan, Pilot scale manufacture of limestone calcined clay cement : The Indian experience, Indian Concr. J. 88 (2014) 22%u201328.[9] R.G. Pillai, R. Gettu, M. Santhanam, Use of supplementary cementitious materials (SCMs) in reinforced concrete systems %u2013 Benefits and limitations, Rev. ALCONPAT. 10 (2020) 147%u2013164. https://doi.org/10.21041/ra.v10i2.477.[10] Leo, E., Alexander, M., Beushausen, H. (2023), %u2018Optimisation of mix proportions of LC3 binders with African clays, based on compressive strength of mortars, and associated hydration aspects%u2019, Cement and Concrete Research.[11] SANS 5863, Concrete tests %u2014 Compressive strength of hardened concrete, (2006) 9.[12] BS 1881, Testing concrete Part 121. Method for determination of static modulus of elasticity in compression, (1983) 7.[13] ASTM C157, Standard Test Method for Length Change Of Hardened Cement Mortar And Concrete, (2017) 1%u20137. https://doi.org/10.1520/C0157.[14] Leo, E., Alexander, M., Beushausen, H. (2024), %u2018Compressive strength and durability performance of limestone calcined clay cement concrete made from selected African raw materials%u2019, Construction and Building Materials, Volume 438.

